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On the microscopic realisation of the c ~ ( 3 )  or MQC model for 
nuclear collective motion? 

Zorka Papadopolos$ and Peter Kramer 
Institut fur Theoretische Physik der Universitat Tubingen, D-7400 Tubingen, West Germany 

Received 14 February 1985 

Abstract. Transformations to collective coordinates are introduced by considering the 
action of collective and intrinsic groups. The methods are applied to the microscopic 
realisation of the c ~ ( 3 )  or MQC model for nuclear collective motion. A special coordinate 
transformation is found which allows one to discuss the collectivity of observables associ- 
ated with this realisation. 

1. Introduction 

In this paper we discuss the separation problem of the ‘collective’ kinetic energy and 
velocity field for the system of A = n + 1 particles. This problem was studied before 
in the framework of nuclear collective motion theories. The approaches in which we 
are interested are based on group theoretical treatments. Two different directions are 
involved. 

One of them concerns the problem of the coordinate transformation for the system 
of A particles such that the collective coordinates which are changed through the 
collective motion appear explicitly. This concept, to the best of our knowledge, was 
introduced by Lipkin et al (1959, Villars (1957), and also Villars and Cooper (1970). 
They ‘added’ to the system of 3A Cartesian single-particle coordinates three collective 
coordinates for the collective rotations of the system and introduced simultaneously 
three holonomic constraints. This idea was improved by Zickendraht (1971) and 
Dzyublik et al (1972). They introduced, besides the rotational coordinates, three 
coordinates for the deformations and vibrations which generalise the p and y coordin- 
ates of Bohr (1952) and of Bohr and Mottelson (1953). Zickendraht and Dzyublik et 
a1 used six holonomic constraints in order to get 3n - 6 intrinsic coordinates which 
Dzyublik et a1 related explicitly to the SO(n) group. This type of collectivity with six 
collective coordinates we are going to call SO( n) collectivity. 

The other idea consists of the study of the phenomenological c ~ ( 3 )  or MQC model 
for the collective motion (mass quadrupole collective model) (Cusson 1968, Weaver 
et a1 1973, 1976, Gulshani and Rowe 1976, Rosensteel and Rowe 1979). These models 
were based on the idea of spectrum generating algebras (Dothan et a1 1965). The 
authors of these papers introduced nine collective degrees of freedom: the six degrees 
already mentioned for the vibrations and rotations (in the frame of the older ~ ~ ( 3 1  
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2654 2 Papadopolos and P Kramer 

model there were only five, because the monopole mode was not included) and three 
Y O ( 3 )  degrees of freedom which belong to the vortex spin (Weaver er al 1973) and 
yield the collective flow which is not irrotational. The collective coordinates in the 
c ~ ( 3 )  model are the %Y(3, R) group parameters and in the MQC model are the %2+(3,  R) 
parameters. 

Gulshani and Rowe (1976) tried to introduce the MQC model through the coordinate 
transformation which was similar to that of Villars (1957) and Villars and Cooper 
(1970) (redundant coordinates), introducing nine %2+(3, R) collective coordinates and 
nine constraints, from which six were holonomic but three non-holonomic, which we 
are going to discuss later on. Due to these nine constraints they obtained the total 
separation of the kinetic energy into a %2+(3. R) collective part and the intrinsic one, 
and they also extracted the collective %2+(3,  R) velocity field which was no longer 
irrotational. 

Other attempts were undertaken in order to obtain a microscopically based MQC 
model. Rowe and Rosensteel(l979, 1980) and Rowe (1981) introduced the coordinate 
transformation based on the orbit analysis which has to be viewed as a transformation 
of momenta rather than coordinates. Buck er al (1979) did similar work. All these 
authors actually obtained the results already found by Zickendraht (1971) and Dzyublik 
er a1 (1972) but interpreted them differently: they claimed that the total separation of 
the %2+(3, R) collective kinetic energy from the intrinsic one was obtained without 
making use of non-integrable constraints. 

In P 2 of this paper we re-derive the results of Zickendraht (1971), Dzyublik et a1 
(1972), Rowe and Rosensteel (1979, 1980) and Buck er a1 (1979) in the frame of an 
orbit analysis WRT the YO(3) x SO( n )  group action. We call the procedure the Y O ( 3 )  x 
S O ( n )  scheme. We claim that this coordinate transformation is good only for the 
already defined SO( n )  collectivity. In order to give the answer to whether and under 
what conditions the MQC collective part of the kinetic energy and the velocity field 
can be totally separated from the intrinsic motion, we introduce in 0 3 the coordinate 
transformation based on the orbit analysis WRT the %2+(3, R) x S O ( n )  group and call 
it the %2+(3, R) x SO( n) scheme. 

2. The 9 0 ( 3 )  x SO(n) scheme 

The configuration of n + 1 particles in three-dimensional Euclidean space can be viewed 
as a point in the 3( n + 1)-dimensional Euclidean space E3("+') .  Considering the centre 
of mass separated, our problem is reduced to E3".  We map E3" on R3" with the Cartesian 
coordinate chart, where each point of E3" is represented by xis,  i = 1,2 ,3  is the space 
index and s = 1,2, .  . . , n the relative Jacobi vector index. On this space we define the 
action of the Y Q ( 3 )  x S O ( n )  group so that the 'collective' group YQ3) acts from the 
left on the index i providing the same action on all relative vectors. The 'intrinsic' 
group S O ( n )  acts from the right on the index s t  

3 n  

Xir -$ 2 c fo[ixisz,:, o ~ Y 0 ( 3 ) , o ' ~ S O ( n ) .  
r = l  s = 1  

The idea of this action is to replace as many Cartesian coordinates as possible by 
group parameters. The three parameters from the o ( w )  E Y O ( 3 )  are the coordinates 

t We use script letters for the 'collective' group and latin letters for the 'intrinsic' group. 
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for the collective rotations. The three coordinates for the deformation and vibration 
are introduced by the diagonalisation of the collective tensor 

n 

yIJ(x) := c x l J ] S  

5 TI 

3 

= c t 4 4 P l q ( 4  P I 2 0  
/ = 1  

The collective tensor is related to the instantaneous tensor of inedia by 

Ill = -m[Y,] -Tr YS,J]. 

The coordinates J, := +v'pIr I = 1,2,3,  are related ;o the instantaneous principal 
moments as 

I, = m(J:+J:) I ~ =  m(J:+J:) I~ = m(J:+J:). 

As an intermediate result one writes the point x,, as 
3 

xt, = c 4 W ) J / O L ( P )  U€Y0(3),O'E S O ( n )  
I = 1  

and one restricts Jl so that J, > Jz > J3 > 0. This restriction is allowed for a quantum 
mechanical system, but not for the classical system. On the right-hand side one has 
more than 3n coordinates and in order to get rid of superfluous coordinates one 
searches for the stability group H of the representative point x,, = J,S,, and finds 
H = diag( M x M) x SO( n - 3), where 

M =  ir' 0 1 0  O O ) ,  1; -: :I, [-A : q, 1' -: :]I 
0 0 1  0 -1 0 0 -1 0 1  

and M < Y6'(3) and M < SO( n), SO( n - 3) < SO( n). The group SO( n - 3) acts on the 
relative Jacobi vector indices from 4 to n. The subgroup M is not essential for the 
number of parameters. One finally writes the point 

3 

I =  1 
x,, = c o, / (w)JPis(P)  

where 40) E 9 7 3 )  ( ~ 9 0 ( 3 ) / M ,  left coset space) J1 > Jz> J3 > 0 and ~ ' ( p )  E 
S O ( n ) / S O ( n  -3), right coset space. For the detailed development of an orbit analysis 
which leads to these results see Rowe and Rosensteel (1980). 

Proposition 2.1. The Jacobi matrix for the coordinate transformation 

(x lS l l= l ,2 ,3 ,  s = l , 2 , .  . ., n)+(o , ,J i ,PLT1p ,  i =  1 , 2 , 3 , a =  1 ,2 , .  . .,3n-6) 
" ( [ " ( V = 1 ) 2 , . . . , 3 n )  

is given through its matrix elements 
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(3) 

where RT,,)i is as in (A21)f and L$5,,, as in (A18). 

In order to express the old Cartesian quantum mechanical or classical momenta pis 
after the coordinate transformation we need the inverse Jacobi matrix 9tlS.l” 

3 n  

p i s =  c %,‘,,c“ 
v = l  

The momenta pis are either -ifi a / a x , ,  or the canonically conjugate momenta to the 
x,,, and v,, are - i A  a / a g ,  or canonically conjugate momenta to l,,. If one is interested 
only in the expression for the kinetic energy in the new coordinates it is of course 
sufficient to invert the metric tensor g,, (Rowe and Rosenteel 1980, Buck et al 1979). 

Proposition 2.2. The inverse Jacobi matrix 9-l is given by its matrix elements 

where and Ldgu,, are as in (A23). 

For the proof the propositions A16 and A17 are essential. 
We now calculate the sPO(3) left action and SO(n)  right action generators on the new 
parametrised manifold, making use of (2.2). 

Proposition 2.3. The angular momentum operator of the system of n + 1 particles 
L * a  

8?/k := -i fi ‘2:k 

where 

acting on the orbit YQ(3) x SO( n)/( M x SO( n - 3)), takes the form 

t The symbol (A21) means proposition A21, listed in the appendix. 
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The YO(3) left action generator "2'; can also be written in the form 
3 3  

g = l  , = , + I  

L a  
% , k = -  c c td i&"(~w,u  

where L,, is defined by 

a 3 
L," := c "@,",,(U) -. 

p = l  8% 

In the derivation one makes use of (2.2), (A8) and (A19). Note that the right action 
generators L,, multiplied by -ih are not exactly the angular momenta components 
'referred' to the body-fixed system (Biedenharn and Brussard 1965) because they fulfil 
the same commutation relations as the angular momenta in the laboratory frame as 
the right and left action generators (see (A12)). The operators -Lgu := ihL,, are the 
momenta 'referred' to the body-fixed system. 

Proposition 2.4. The right action generators of S O ( n )  acting on the orbit YO(3) x 
SO( n)/( M x SO( n - 3)), expressed through the new coordinates o and /3, are 

g = 1  , = , + I  , = I  v = 4  

where Y,, and .9gu are defined as 

g < v = 1 , 2 , 3  a 3n-6 

Y g u : =  - c L@g",,(P) - 
. i = I  3/37 

and the matrix d is given in (A19). The generators "X:,  can also be written 

and the Hermitian operator is "g:,:= -ih "X:( .  

In the derivation one makes use of (2.2), (A8), (A16) and (A19). Note that Y,,, 
g, U = 1,2,3,  although defined to include in general all partial derivatives WRT the p 
(the /3 parametrise the right coset space SO( n ) / S O (  n - 3)), through some particular 
choice of the /3 can be recognised as the left action generators on an YO(3) submanifold 
of the manifold SO( n ) / S O (  n - 3): 

One can assume that the first three /3: PI,  p2 a?d p3 parametrise the SO(3) submanifold. 
The differential operator multiplied by -ih, Y,,, := = -ihLf,<, is the angular momen- 
tum in the body fixed frame (Buck et a1 1979) known as the vortex spin. The 4igvr 
g = 1,2,3,  U = 4 , 5 ,  . . . , n, by this choice of coordinates still include partial derivatives 
WRT aII /3 including also P I ,  p2 and p3, the 'collective' vortex coordinates. This property 
of 9 will be discussed in particular in the next section. 
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The proposition analogous to ( 2 . 3 )  and ( 2 . 4 )  can be stated for the classical momenta 
(Hamiltonian functions of the Poisson action (Arnold 1978)) replacing the partial 
derivatives -i h a/ay, by the momenta n-, canonically conjugate to the corresponding 
coordinates lY. 

Proposition 2.5. The quantum mechanical kinetic energy on R3” is given in the new 
set of coordinates ( wp,  &, p 7 )  by 

ih n - 3  

where all Hermitian differential operators which appear are defined in ( 2 . 3 )  and ( 2 . 4 )  
except for the vibrational operators ?, := -ih a/aJ, U = 1 , 2 , 3 .  

In deriving ( 2 . 5 )  one makes use essentially of ( 2 . 4 ) ,  

and also of (A9), ( A 2 2 ) ,  (A17), (A18), ( 2 . 3 )  and ( 2 . 4 ) .  The interpretation of the 
expression for the kinetic energy given in ( 2 . 5 )  is as follows. With respect to the S O ( n )  
collectivity the first three terms are collective, the fourth and the fifth are intrinsic and 
the term proportional to ig is the coupling term. With respect to the % Y ? + ( 3 , R )  
collectivity, with the special, already mentioned, choice of the p?. coordinates, it can 
be found that the first five terms in the expression of T in ( 2 . 5 )  are purely collective, 
but, as we also mentioned, the 3n -9 differential operators 4 are defined as to contain 
partial derivatives WRT all 3n -6 SO(n) /SO(  n - 3 )  right coset space parameters and 
cannot be considered as intrinsic. In order to see if the complete separation of the 
% 2 + ( 3 ,  R) collective kinetic energy from the pure intrinsic part can be achieved and 
under what conditions, it is discussed in 0 3 with the use of a special coordinate 
transformation. This provides us with intrinsic differential operators which include 
only partial derivatives WRT the intrinsic coordinates. 

An analogous expression for the classical kinetic energy can easily be determined 
using 

where T ,  and n-, are the classical momenta. The result is completely analogous to 
the quantum mechanical one, only the linear term in momenta does not appear. 

Now we try to extract the S O ( n )  linear (collective) velocity field which should 
correspond to an irrotational flow. We proceed as in Gulshani and Rowe (1976). We 
first calculate pis  (the momenta conjugate to the coordinates x i , )  as a function of the 
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new coordinates and momenta: 
3n 

Pis = B ; i , ' v ~ v  

where the classical momenta are defined as follows: 

311-6' 

Yg, := - L@gu,T(p)TT g < U = 1 , 2 , 3  
7 = l  

and T ,  are the momenta canonically conjugate to the coordinate 8,, w = 1 , 2 , 3 .  With 
respect to SO( n )  collectivity, the first two terms in the expression for pis determine the 
collective part. For the local Hamiltonian we have 

mu, = Ps 
and we extract the collective part of the velocity U, 

where 

X;"= o l w ( W ) o j w ( W ) 8 ; 1 T w  
w = l  

vib 

s s  
X i j  = X j i .  

We define the velocity field U at the point x to be the collective component of the 
velocity us for the Jacobi vectors s at xs = x: 

1 3  

m j = l  
ui =- ( X i b + X i ) X ,  i = 1 ,2 ,3 .  

It is clear that the SO(n) (collective) velocity field separates completely from the 
intrinsic part and is irrotational, rot U = 0. 
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The first three terms of p i s  are the 'candidates' for the (collective) velocity field 
WRT the % 2 + ( 3 , R )  collectivity: the momenta zgv can still be considered as being 
related to the S O ( 3 )  submanifold of the right coset space S O ( n ) / S O ( n  - 3 )  = CR, but 
the part proportional to 9 is related to the whole CR and cannot be defined as purely 
intrinsic WRT % 2 + ( 3 ,  R) collectivity. It should be stressed again that all the classical 
analysis in this section was done on a phase space related to special orbits in configur- 
ation space defined by the condition i ,  > i2 > 2, > 0. Whereas the other types of orbits 
in the quantum mechanical case are of measure zero, in the classical case one should 
also consider all other types of orbits. Similar remarks also apply to the next section 
(see ( 3 . 1 . 3 ) ) .  

3. The '39+(3 ,  W) x SO(rt) scheme 

As already stressed in the introduction and in 0 2, in order to study the problem of 
the separation of the % 2 + ( 3 , R )  collective kinetic energy and the velocity field we 
introduce some set of coordinates where the nine collective coordinates are defined as 
% 2 + ( 3 ,  R) parameters and the additional 3 n  -9  coordinates of the right coset space 
SO( n ) / ( S 0 ( 3 )  x SO( n - 3 ) )  = CR are intrinsic. We introduce the collective momenta 
as the vector fields on the % 2 + ( 3 ,  R) manifold and corresponding intrinsic momenta 
on the right coset space CR. All this we achieve through the coordinate transformation 
based on the % 2 + ( 3 , R )  x SO( n) group action on R3" and a corresponding orbit analysis. 
This procedure we call the % 2 + ( 3 ,  R) X S O ( n )  scheme. 

3.1. The %2?+ (3, I$) x S O ( n )  scheme, orbit analysis 

Dejinit ion 3.1.1. The action of % 2 + ( 3 ,  R) x SO( n )  group on R3" is introduced as the 
left action of % 2 + ( 3 ,  R) and the right action of S O ( n )  on the points of R3" which are 
the Cartesian coordinates of n Jacobi vectors (x,li = 1 , 2 , 3 ,  s = 1 , 2 , .  . . , n )  for the 
system of n + 1 particles: 

3 f c (2');1x/r,Gys(y) 
r = 1  / = I  

where ?E % 2 + ( 3 ,  R), ;"( y )  E SO( n ) .  

We choose the representative point to be Ji, = ais, i = 1 , 2 , 3 ,  s = 1 , 2 , .  . . , n and find 
its stability group by demanding that 

The stability group is isomorphic to S O ( 3 )  x SO( n - 3 ) ,  where SO( n - 3 )  is a subgroup 
of SO(n)  whereas S O ( 3 )  can be chosen to be either a subgroup of % 2 + ( 3 ,  R) or of 
S O ( n ) .  If we choose it to be the subgroup of % 2 + ( 3 , R )  then we are again back to 
the Y O ( 3 )  x SO( n )  scheme which we have already studied in 0 2 .  We choose S O ( 3 )  
to be a subgroup of SO( n ) .  Then the orbit for the representative point given above is 
the coset space % 2 + ( 3 ,  R) x S O ( n ) / ( S 0 ( 3 )  x S O ( n  - 3 ) )  and is parametrised by 3 n  real 
parameters. S O ( n ) / ( S 0 ( 3 ) x  S O ( n  - 3 ) )  is the right coset space. In order to show that 
the orbit discussed so  far is the only-one under the % 2 + ( 3 ,  R) x SO( n )  action, we make 
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use of the YO(3) x SO( n) scheme. From this scheme we know that %2+(3, R) may be 
decomposed as 

%~+(3 ,R)=u{(Ycy(3) /X;)  xixYcy(3)) 

where XSj is the stability group of the corresponding representative point xis = Sisi. 
We insert this decomposition of %2+(3,R) into the coset space %Y+(3,R) x 
SO(n)/(S0(3) xSO(n-3)) and obtain (YF7(3)/%'9 X J  xY0(3)xSO(n)/(S0(3) x 
SO( n - 3)), which is equivalent to (90(3)/  Xi) x 2 x (SO( n)/SO( n - 3)). We are left 
with the manifold decomposition as in the 90 (3 )  XSO(n) scheme which is complete. 
So we conclude. 

Proposition 3.1.2. Under the action of %2'+(3, R) x SO( n), the R3" obtains coordinates 
which are the parameters of the single orbit equivalent to the coset space %2'+(3, W) X 
SO( n)/(S0(3) x SO(n - 3)). We write for xi, E R3" 

where X ' E  %2+(3, R) and is parametrised by the real parameters %2'+(3, R) matrix 
elements (xL\i,j = 1,2,3) and ~ " ( p )  E SO(n)/(S0(3) x S O ( n  -3)) is the right coset 
space. This decomposition is unique. The coordinates xb can be considered as nine 
collective coordinates in the sense of %2+(3, R) collectivity and the p are then 3n -9 
intrinsic coordinates. We define this coordinate transformation (CT) as c $ ~ :  

The CT 41 is only a first step: we would like to obtain some collective coordinates 
which we can interpret as the rotational ones, coordinates for vibrations and deforma- 
tions and coordinates for vorticities. These coordinates can be easily introduced using 
the YpC(3) x SO( n )  scheme for n = 3 already mentioned above, which provides us with 
the well known decomposition for the %2+(3 ,  W). So we introduce CT $J2 and 9 which 
is defined as $J := 42 0 4,.  

Proposition 3.1.3. The coordinate transformation 

(x,(i = 1,2,3,  s = 1,2, .  . . , n )  - (up, ii, w:,, &(I*, p' ,  i = 1,2,3, T = 1,2, . . . ,3n -9) 

is defined by the unique decomposition of xi,: 

d 

3 3  

xis = C C o i f ( w ) ~ , o l k ( w ' ) o l s ( P )  
f = 1  k = l  

where U ( W )  E 90(3)/%'; is the left coset space and u ' ( w ' )  E Y0(3), U"@) E 

SO(n)/(S0(3) xSO(n -3)) is the right coset space. The CT 4 we introduce by two 
successive CT 420 q51 where 4 ,  is as in (3.1.2) and 42 is 

4 2  (X;,,pTlj, l = l , 2 , 3 ,  T=1 ,2 , . .  . ,3n-9)- 

X ( w , ,  Ji, w : 8 , P T l + , ~ ' ,  i =  l ,2 ,3 ,  T =  1,2 , .  . . ,3n-9)  
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introduced through the unique decomposition of X I :  

We restrict ourselves again, as in the YO(3) x S O ( n )  scheme, to the orbit of the type 
2, > g2 > 8, > 0 with Xes = M (M is the discrete group defined in 5 2). 

3.2. The Jacobi matrix and its inverse for the coordinate transformations 4,, d2 and 4 
In what follows we are not going to give the explicit inverse Jacobi matrix for the 
coordinate transformation 4. We will determine the Jacobi matrices and their inverse 
for c$l and d2. In all concrete calculations in (3 .3) t  and (3.4) we will proceed in two 
steps: first, find the expressions given after the coordinate transformation 41 using 2-l 

for and then apply 42 using a-' for 42 in order to determine the final form of the 
expressions studied in the coordinates related to 4. 

Proposition 3.2.1. The Jacobi matrix for the coordinate transformation 41 introduced 
in (3.1.2): 

+, ( x , , l i = l , 2 , 3 , s = I , 2  , . . . ,  n ) - ( ~ : ~ , P ~ I i , l = 1 , 2 , 3 , ~ = 1 , 2  , . . . ,  3 n - 9 )  

= ( ( 5 J v = 1 , 2 ,  . . . ,  3 n )  

is given through its matrix elements 

Proof: It follows trivially using (A18). 

Proposition 3.2.2. The inverse Jacobi matrix 2-l for the coordinate transformation 
introduced in (3.1.2) is given by its matrix elements 

t The symbol (3 .3)  means section 3, subsection 3.  
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Pro05 One makes the following ansatz 
m = l , 2 , 3 ;  k = l , 2  , . . . ,  n j ,  1 = 1 , 2 , 3  r 

Proposition 3.2.3. The Jacobi matrix for the CT & 

4 2  
( X J f , P T I J ’ , l ’ l , 2 , 3 , 7 ‘ 1 , 2  , . . . ,  3n-9)- 

x ( w , ,  &, U:,, P,(p, p ’ ,  i =  1,2,3,  T =  I , & .  . . , 3 n )  

introduced in (3.1.3) is given through its non-trivial matrix elements identical to those 
obtained for the YQ(3) x SO( n )  scheme in (2.1) setting n = 3, instead of xfs ,  1 = 1 ,2 ,3 ,  
s = 1,2, .  . . , n, X I I ,  j ,  1 = 1 , 2 , 3  and instead of P, 

Proposition 3.2.4. The inverse Jacobi matrix 2-l for CT & introduced in (3.1.3) is 
given through its non-trivial matrix elements identical to those obtained for the 
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YfY(3) x SO( n )  scheme in (2.2) setting n = 3, instead of xls, 1 = 1 ,2 ,3 ,  s = 1,2 ,  . . . , n, 
xiI, j ,  1 = 1 ,2 ,3 ,  and instead of Pn U;,: 

(3) 

3.3. The left and right action generators and other differential operators expressed through 
the new coordinates after the coordinate transformation 4 I  and +2 

In this subsection we consider only differential operators and we claim that the classical 
momenta can be obtained analogously. 

Proposition 3.3.1. The right action generator of SO(n)  acting on the manifdd 
W + ( 3 ,  R) x SO( n) / (S0(3 )  x SO( n -3) ) ,  expressed through the new x' and P coordin- 
ates after the CT 41 given in (3.1.2), are 

a 3 

RX:~= i i "@, , , , (p )  E(.;,-- XI! - a )+"LSr s < t = 1 , 2 ,  . . . ,  n 
m = l  I = m + l  j = l  axil ax;, 

where 

After the successive 42 transformation, RX:r takes the form 

is the vortex spin defined on the YO(3) manifold. 

Proof: One uses the expression for 2-l for the CT d1 given in (3.2.2.1, and then ,$-I 

for CT 42 given in (3.2.4). 

Proposition 3.3.2. The right action generators "X:: of SO(n)  given in (3.3.1) transcribed 
into the body-fixed frame are 

for s < t = 1 , 2 , 3  

for s = 1 , 2 , 3 ,  t = 4 , 5 , .  . . , n 

for s < t = 4,5, .  . . , n 
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Proof: 

LO 

and we use (A8) and (A17). 

f o r s = 1 , 2 , 3 , ? = 4 , 5  , . . . ,  n 

f o r s <  t =4 ,5 , .  . . , n 

Proposition 3.3.3. The left action generators of YO(3) acting on the manifold 
% 2 + ( 3 ,  R) x SO( n ) / ( S 0 ( 3 )  x SO( n -3)), expressed through the new coordinates after 
the coordinate transformation 4 = & 0 are 

3 3  

‘ g : k = -  ‘d ;k fgo(O) lgu  I <  k =  1,2,3 
g = 1  u = g + l  

where 

Proot After the CT & the left action YO(3) generators are defined on %-Fe+(3,R) 
manifold parametrised by x $ ,  and after the CT d2 one obtains the result in the same 
way as in (2.3) only for n =3.  

3.4. The kinetic energy and the velocity jield in %-Fe+ (3, R) x SO(n) scheme 

Equipped with the inverse Jacobi matrix for the coordinate transformation c$l we 
calculate the complete kinetic energy for the relative motion of n + 1 particles in new 
coordinates. 

Proposition 3.4.1. The quantum mechanical kinetic energy on R3” is given after the CT 

41 (see (3.1.2)) in the new set of coordinates: 
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where 

and 

P p , m < k  '= a r , m < k  m, k, m', k'= 1,2,. . . , n. 

We are not going to discuss the rather complicated expression obtained in (3.4.1) 
because we use it only as an intermediate result. What we are really interested in is 
the question of whether the kinetic energy in new coordinates after the CT 4 separates 
into %2+(3,  R) collective and intrinsic parts. For this goal it is only important to 
calculate all the quadratic terms in momenta in the expression for the kinetic energy 
given in (3.4.1) after the CT 42. This can easily be done making use of (3.2.4). 

Proposition 3.4.2. The quantum mechanical expression for the kinetic energy quadratic 
in momenta (T,,,) under the CT defined in (3.1.3) 

( x j s l i = l , 2 , 3 , s = l , 2  , . . . ,  n ) ~ ( w , , a i , w : . , P r l C L , i , C L ' = l , 2 , 3 , ~ = 1 , 2  , . . . ,  3n-9 )  

takes the form 

4 
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where 

a 
a i v  

f v : =  -ih- U = 1 , 2 , 3  

3 a 3”-9 

j i k : = i h  U : , ( o ’ )  c ‘@,,,(p)- i = 1 , 2 , 3 , k = 4 , 5  , . . . ,  n 
m =  I T =  1 ap7 

3 3 3  

m = l  f = 1  a = l  
L@p&J(p) := oh(u’)u;f(u’) u L a ( m ’ )  “ G m k , f a ( p )  

i = 1 , 2 , 3 ,  g <  v = 1 , 2 , 3 ,  k = 4 , 5  , . . . ,  n. 

Let us discus2 the expression obtained in (3.4.2). Through the S T +  we defined the 
vortex spin 2 on an YO(3) manifold. The intrinsic momenta 5 contain no partial 
derivatives WRT the % 2 + ( 3 ,  R) parameters, or more exactly, they do not contain YO(3) 
parameters which define the vortex spin $. All this can be seen from (3.3.1). It is 
not contained in the YO(3) x S O ( n )  scheme, where both vortex spin 3 and the 
intrinsic operators $ were defined on the right coset SO(n)/SO(n -3 )  (see (2.4) and 
compare it with (3 .3.1)  and (3.3.2)). From (3.4.2) it becomes clear that a complete 
separation has not been achieved: in the sixth and seventh terms in T,,, coupling 
terms appear. The matrix block different from zero which causes those terms is 
“O?&’(p) or equivalently “@,,,,(p) for m = 1 , 2 , 3 ,  k = 4 , 5 , .  . . , n, 1 < i = 1 , 2 , 3  (see 
(3.3.2)). Only if we postulate that ‘@mk, , i (p )  = O  would we obtain the complete separ- 
ation. This condition can be restated in terms of the matrix ‘q, inverse to “0, and 
the condition becomes ‘v,,,k,[f(p) = 0 for the same range of indices (see (A3) and (A17)). 

Now we compare our results with the approach taken by Gulshani and Rowe 
(1976). The constraint functions introduced by these authors may be written in our 
notation as 

where b, U = 1 ,  2, 3 (see (A19)). Actually 0’’ of these authors is some 3 x n matrix which 
in the present analysis can be identified as o ” ~  SO(n)/(S0(3) x SO( n - 3) ) .  The authors 
in equation (2.9) require the vanishing of the constraint functions and hence formulate 
three non-holonomic constraints from altogether nine constraints on o:s there denoted 
by x : ~ ,  n = 1 ,2 ,  . . . , N (  N A - 1 )  and LY = 1 , 2 , 3 .  These constraints define 3n -9  
intrinsic coordinates pr denoted there by &. The constraint functions by our analysis 
are identified as part of the matrix “V considered above. So we have shown that the 
separation of the kinetic energy enforces the non-holonomic constraints. 
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Now we try to define the linear (collective) velocity field. Making use of dp-' for 
both CT $ I  and 42 we obtain the candidate for pf;O'': 

and 
1 3 3  

g = 1  v = g + l  
x?:= C C (oiu(w)oig(w)-oru(w)oi,(w)) a g g v  

x;: = -xf 
and where Lgo, ggv and nw are the classical momenta which take the same form as the 
corresponding differential operators with partial derivatives replaced by the canonical 
momenta. The last line in p::" proportional to L0,k,i(/3), m = 1,2,3, k = 4,5,. . . , n, 
I < i = 1,2,3,  prevents the separation. 

4. Conclusions 

We derived the kinetic energy with an exact expression for the inverse of the Jacobi 
matrix 8-l for CT 4 based on the orbit analysis WRT the %2+(3, R)  X SO( n) group. 
We conclude that the constraints LO,k, i (p)  = 0 for m = 1,2,3, k = 4 ,5 , .  . . , n, 1 < i = 
1,2,3 are necessary and sufficient if one wants to obtain the total separation of kinetic 
energy into intrinsic and collective parts WRT the %3+(3,R) collectivity. The same 
holds true for the separation of the velocity field. It should be stressed that the 
constraints and hence the separation do not follow from the theory of the Lie groups 
involved. 

Appendix. The action of a Lie group on its parameter space 

In this appendix we give a set of definitions and propositions which we use as the 
tools in our calculations. Some of them are well known but we give them for complete- 
ness. Each proposition is given without proof; instead, at the end of each one we 
indicate the propositions and definitions we used in order to prove it. 

We study first the left action of a group 6 on its parameter space G ( G -  6 )  and 
assume everywhere the exponential parametrisation of G or 6 which implies that 

g - Y Y )  = g ( Y - ' )  = d - Y )  gEG. 
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The left action of 6 on G is globally given by 

GXG-G 
g'-Ig = g' where g' E 6, g, g' E G. 

Definition AI. Given the structure function 4@( y, x )  of the group G, the matrix L O ( x )  
can be introduced: 

Definition A 2  The generators for the left action 

~ X G + G  

are 

Definition A3. The matrix % ( x )  (Gilmore 1974, p 97, relation (2.6)) is introduced as 
the inverse of L O ( x ) :  

L q r  LO 'LO L q f  = 0, 

Now we present the equivalent expressions for the right action G x 6 + G and its 
relation to the left action. 

Definition A4. Given the structure function 4P(x,  y ) ,  the matrix " O ( x )  can be intro- 
duced: 

Definition AS. The generators for the right action G x 6 + G are 

Definition A6. The matrix " q f ( x )  is introduced as the inverse of " O ( X ) .  

Proposition A7. The matrices d ( x )  defined as 

form a representation of G called the adjoint representation (Ad representation). 

Proposition A8. The right and left action generators are related linearly through the 
adjoint representation 

"X, (X)  = - - C t d P U ( X )  "XU(X)  
U 
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Proposition A9. The matrix “*(,y) defined in (A6) is given as 

Proposition A10. The matrices ‘*(,y) and ‘*(,y) are linearly related through the adjoint 
representation 

“ * ( X I  = R*(X) fd(X)  

(Ab), (A8). 

Proposition AII .  The matrix LV(x) defined in (A3) is given as 

Proposition A12 The following relation is satisfied: 

where d ( 7 )  is the adjoint representation and the C& are structure constants (Gilmore 
1974, pp 102, 103, relations (3.14), (3.23)) 

[Lxn, ‘ X , ]  = c cp,, “x,. 
P 

Proposition A13. The left and right action generators commute among each other: 

[Lxp, “X,] = 0 V P ,  

Propositions A14. The right action generators fulfil the commutation relations with the 
same structure constants as the left action generators: 

[”Xa, “X,] = cp,, “x,. 
P 

(A8), (A12), (A13). 

Now we choose the parameters of the group 6 and G (6 = G) so that certain subsets 
of them parametrise a subgroup H of G, H < G. The group manifold G can be written 
as G= H C R  where C R = G / H  is the right coset space. The parameters of the group 
G are denoted by yw, yp!  and determine g (  y )  E G; the parameters of the subgroup H 
are S,, S,., . . . , SA, SA,,  . . . and determine h ( 6 )  E H, the parameters of the right coset 
space CR are p,, p r , ,  . . . , pm pu,, . . . and determine c ( p )  E CR. In what follows, the 
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indices K ,  K ‘ ,  . . . , A, A’,  . . . will always refer to the subgroup parameters S. The indices 
T, T ’ ,  . , . , and the a, U’, . . . , refer to the right coset parameters P, and the indices 
p, p’ . . . , refer to the parameters y of the full group. 

We start with the right action, H C R x G + H C R .  The right action generators can 
be written 

It can easily be shown that R@,,(y) = R@,,(p) and analogously ‘q , , (y)  = ‘ q , , ( P ) .  
We are particularly interested in the right action of the group 6 on some right coset 
space CR = G/H. That such an action is well defined is evident from the global argument 

= h ( S ) c ( P )  gg’= hcg’ = hh’c‘ 

where c ‘#  c ’ ( S )  and is equivalent to c(P)g’+  c ’ (P’ ) .  So we write the following well 
known proposition. 

Proposition A15. The manifold which supports the right group action 6 may be chosen 
to be the right coset space CR so that CR ~ 6 +  CR. The right action generators are 

and the corresponding ‘ q ( P )  and “ O ( P )  matrices are related by 

c R q v , ( P )  “@, , (P)  = S U T .  

P 

Proposition A16. Within the new notation, the matrices “ @ ( S P )  and “ q ( S P )  take the 
following block form: 

A T 

U K [ [ ]  - M P ,  7 S P )  

A 

8 = P  
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Setting 6 = e(O), the last two relations become 

One should note that although some left action of G on the right coset space cannot 
be defined in general, the matrices ‘ O ( p )  and ”’U@) can be defined. 

Now we restrict our analysis to an orthogonal S O ( j )  matrix group, i.e. on ( 1 0 0 , .  .) 
(Hamermesh 1964, pp 396, 397), the fundamental representative of SO( j )  which is 
exponentially parametrised. The infinitesimal generator basis consists of Lief := cif - cli 
for i ,  1 = 1,2,  . . . , j  and ( c i l ) k j  = 6 i k 6 l j  Any element of the Lie algebra can be written 

with real parameters plcf. In those places where we are not much interested in details, 
we write pp instead of pier. 

P r o p o s i t i o n s  A18. 

for i < 1 
for i = 1 

-L*p , f< i  for i >  I 

(A.11). 

P r o p o s i t i o n  A19. The adjoint representation d ( p )  can be written 

‘ d k m , i f ( ( P )  f o r k < m , i < l  
for k < m, i > 1 
for k >  m, i < 1 

t d n l k , f h P )  f o r k >  m, i >  1 
for all other cases 

- ldkm,f i  

@ i k ( ( P )  ‘ o m f ( q )  - . z m ( p )  ‘ O k f ( ( P )  = - tdrnk,d((P)  I 0 

(A7). 

P r o p o s i t i o n  A20. 

(AlO), (A18), (A19). 
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Proposition A21. 

for i < l  
for i = 1 
for i > 1. 

( A l l ) .  

Proposition A22 
(A18), (A21). 

= - @ F , l i  both for the left and right action 

Dejnition A23. 
f o r i < l  
for i = 1 
fo r i>  1 

both for the left and right action. 

Proposition A24 Gil,+ = -GI,,,  both for the left and right action 
(A23). 
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